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Department of Civil Engineering, Queen Mary College, University of London, UK 

The paper deals with the non-linear stress-strain characteristics of engineering soils and 
investigates some of the more important factors relating to the elasto-plastic behaviour. A 
review of previous literature describes some of the work already performed in this area of 
study, and discusses the applicability of the theories proposed, most of which have been 
established using results obtained from a standard tri-axial test. A non-linear stress-strain 
theory is formulated, using results from a "true" tri-axial test, which also takes into 
account the behaviour of the soil during unloading and subsequent reloading. This 
behaviour is shown to depend on the stress levels attained in the unloading/reloading 
hysteresis loop in which the reloading portion of the loop is closely linearly elastic. 
Finally, the suitability of the proposed equations in typical engineering calculations is 
discussed and a worked example is included which demonstrates how the proposed 
incremental stress-strain equations may be applied in analysis. 

List of symbols 
The nota t ion  used in the theoretical work is as 
follows: 
E -- modulus  of elasticity of soil. 
H = vertical depth of cavity. 
K 0 = coefficient of earth pressure at rest 

assumed constant  with depth. 
//1. = Rankine  ratio = 

(1 - sin r + sin r 
K, K1,/(2, f l ,  f2, g, m, n = constants  found 

experimentally. 
k = Ro2/R12. 
ph = stress in any horizontal  direction when 

p~ = p~ -- ph. 

pr = radial stress. 
p~ = stress in x-direction. 
p~ = vertical stress. 
pz = stress in z-direction. 
p~i, pui, pz~ = stress levels in co-ordinate 

directions at commencement  of 
unloading/re loading cycle. 

pxf, puf, p~f = stress levels in co-ordinate 
directions at end of unloading  por t ion of 
unloading/re loading cycle. 

Po = circumferential stress. 
pu = ult imate pressure in cavity. 
R0 = initial radius of cavity. 
R1 = ult imate radius of cavity. 
R2 = radius of plastic zone. 
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r = a radial distance from centre of cavity 
to typical element in elastic or plastic 
zone. 

rl, r2, r a = stress ratios = p~ (ultimate)/px~, 
py (ultimate)/pu~, p ~ (ultimate)/pz~ 
respectively. 

t = step length. 

w = radial displacement of elastic zone. 
= soil density. 
= average volumetric strain of plastic zone. 

~r = volumetric strain of increment  of plastic 
zone. 

~Pr, ~ r ,  etc. = a small increment  of the 
quant i ty  concerned. 

Er = radial strain. 
e~ = strain in x-direction. 
% = vertical strain. 
~ = strain in z-direction. 
c 0 = circumferential strain. 
Exy~, etc -- strain in the x-direction due to 

loading in y-direction at commencement  
of unloading/re loading cycle, etc. 

exuf, etc = strain in the x-direction due to 
loading in y-direction at end of 
unloading  por t ion  of unloading/  
reloading cycle, etc. 

v = Poisson's  ratio. 
r = angle of internal  friction of soil. 

�9 1975 Chapman and Hall Ltd, 
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1. Introduction 
The term soil, in an engineering sense, is used to 
describe the sediments and deposits of solid 
particles produced by the disintegration of rock. 
Such soils, therefore, consist of solid particles 
which are assembled in relatively open packing, 
and variations in the grading and packing of 
these particles can produce samples which may 
be extremely dissimilar in both composition and 
behaviour. It should be emphasized that 
although the approach in this work tends to 
discuss the behaviour of a particulate solid 
material in terms of an "engineering soil", a 
formulation of the response of such a material 
under a varying stress field may be fundamental 
to other areas of study such as those involving 
packing and pressing processes. 

It is perhaps understandable that early analyses 
of stress and strain in soils tended to assume that 
behaviour was that of a perfectly elastic solid 
with a constant modulus of elasticity and 
Poisson's ratio. There are a multiplicity of factors 
influencing soil behaviour, the relative assess- 
ment of which was not immediately apparent, 
and although it was generally acknowledged that 
it was unwise to place too much reliance on 
linear elastic theory [1 ], few other solutions were 
available; and those that were available were 
relatively intractable due to lack of advanced 
computational facilities. Furthermore, elastic 
idealization has been given impetus due to the 
fact that there are certain classes of problems 
which are satisfactorily described by this 
approach. 

Within the last decade or so researchers have 
displayed increasing interest in the factors 
governing the non-linear stress-strain behaviour 
of soils. Besides soil structure these include such 
factors as water content and drainage con- 
ditions, type and duration of loading and stress 
history. The latter items have attracted con- 
siderable interest because the behaviour of 
soils are greatly influenced by the anisotropy 
which is induced by the loading system. More- 
over, it has been observed [2] that successive 
loading, unloading and reloading of soil samples 
produces approximately linear elastic behaviour 
with only small hysteresis of the soil during the 
unloading and reloading cycle. It would be 
important that any elasto-plastic representation 
of a soil should be able to describe this facet of 
non-linear behaviour satisfactorily. In con- 
nection with this factor it is of interest that under 
certain circumstances a naturally occurring 

granular soil may show, within a given range of 
loading/unloading, a linearly elastic response. A 
further discussion of this feature occurs later. 

Until recently, with one or two exceptions [3 ], 
investigation into soil behaviour has been 
conducted mainly using a standard tri-axial 
apparatus in which the intermediate and 
minor principal stresses are equal. This may be 
satisfactory for producing simplified stress-strain 
relationships and, indeed, has been used fairly 
recently [4] for finding stress-dependent co- 
efficients under these simplified conditions. 
However, for cases in which three-dimensional 
stresses and strains are involved it is important 
that "true" tri-axial tests are carried out, i.e. 
tests in which the three principal stresses may be 
independently varied; and proposed theoretical 
predictions employ expressions that involve all 
three principal stresses and strains. Under such 
circumstances it is apparent that the concepts of 
modulus of elasticity and Poisson's ratio are 
abandoned, for even in simplified stress systems 
these have been shown to be stress dependent. 
Instead, for the general case, it is clear that nine 
independent stress-dependent coefficients are 
involved in the stress-strain relationships for 
soils. In addition to this, many calculations in 
engineering soils are not properly described by 
the relationships derived from the simplified 
tri-axial procedure as the failure criteria as well 
as stress-strain relationships should include the 
effect of the intermediate principle stress. 

Summarizing, therefore, engineering calcula- 
tions for soils should not only include the 
important concepts of non-linearity, inelasticity, 
and stress-dependency but also all three prin- 
cipal stresses; and it is the purpose of this study 
to put forward a basic and easily worked 
formulation that will enable workers to satis- 
factorily describe soil behaviour when subjected 
to general loading cycles. 

2. Previous work 
The following non-linear stress-strain relation- 
ship of hyperbolic form which is applicable to 
both sands and clays has been proposed by 
Kondner and others [5, 6]: 

p~ - p h  a + bey (1) 

where p~ and ph are the major and minor (also 
intermediate) principal stresses respectively, e~ 
is the strain in the principal direction and a, b are 
constants which may be determined experi- 

1617 



A. W. T. D A N I E L ,  R. C. H A R V E Y ,  E. B U R L E Y  

mentally. These have the following physical 
significance: 

at E~ = 0; d(pu - ph) de~ - 1/a = initial tangent 

modulus and at % = oe; (pu - p h ) u l t i m a t e  = 

1/b = failure asymptote. 
It is a point of interest, to which attention will 
later be drawn, that according to the above 
relationship, E~ = 0 whenp~ = pn; and this is, of 
course, not necessarily correct. However, it must 
be admitted that the condition of zero stress and 
strain is not really applicable in practice and, 
therefore, the condition of zero strain may be 
arbitrarily applied to an already stressed soil. 

Equation 1 can be rewritten in the following 
form: 

Ey 
= a + bey (p~ - ph) 

which, when plotted on transformed axes, yields 
a straight line relationship. It is apparent that the 
value of the initial tangent modulus is stress 
dependent, and has been shown by Janbu [7] to 
be a function of the minor principal stress ph. 
Other researchers such as Hansen [8], Desai [9], 
Breth et al. [4] have also proposed stress-strain- 
relationships, but all these proposed relation- 
ships have been based on data obtained from 
standard tri-axial tests in which the intermediate 
principal stress is equal to the minor principal 
stress. However, Daniel [3] has, by conducting 
a " true" tri-axial test, produced generalized 
stress-strain relationships of the following type 
which are of an incremental nature, and appli- 
cable to dry granular media subjected to first 
loading: 

_ 1 ~(PuP~)] K I P ~  Kr 

- 2 - p ~  - p ~  3 p ~  

Pu 

2 - -  p~ - 
~ . - P o  

(2a) 
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P ~  Pz 
Pu - P~ 

•Py 
+ 1 

p~ P~ _ m - - -  - p ~  @ ~  ( 2 b )  
Pu - P~ 

P~ Px --  - p ~  ap~ 
P~ Py 

1 ~/(P~,Pu)) (2c1 

where p~, e~, etc = stresses and strains respec- 
tively in co-ordinate directions; ap ~, 6~ x, etc = a 
small increment of the quantity concerned; 
/(i. = Rankine ratio, K, m and n = constants 
found experimentally. Examination of the 
equations shows that the incremental strains for 
each increment of stress are related by stress- 
dependent coefficients which contain experi- 
mental parameters depending only on the type of 
sand. 

Using Equation 2b and puttingp~ -- p~ = ph 
= constant, for a particular experiment, pro- 
duces a relationship close to that represented by 
Equation 1 except that a zero correction has to 
be made because Kondner's equation does not 
allow for other than hydrostatic stress and zero 
strain occurring simultaneously. In fact, Kond- 
ner's equation is rather inadequate in the small 
strain range. However, this shows that in the 
simplified case Daniel's equations give similar 
results to Kondner's. 

As stated in the introduction, it is important 
to be able to predict the behaviour of soil, not 
only under a gradually increasing stress field, but 
also during unloading and reloading cycles. Ko 
and Scott [10] and Holubec [11] have shown 
that soil exhibits an elasto-plastic behaviour such 
that strains induced under loading are not 
completely recoverable when unloading takes 
place. They further showed that under simpli- 
fied stress conditions during the reloading cycle, 
nearly linear elastic behaviour occurred until the 
original state of loading was attained. Duncan 
and Chang [2] carried out some additional tests 
which confirmed the original work in that the 
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hysteresis effects during unloading and reloading 
were sufficiently small to be neglected without a 
great loss in accuracy. Thus linear elastic 
behaviour may be assumed and, as this was 
shown to be independent of the value of the 
difference between maximum and minimum 
principal stresses, the elastic modulus could be 
represented as a function of the confining 
pressure only. 

Tests carried out by the writers have not 
confirmed this final point in the pattern of 
behaviour, and it is of interest to compare and 
discuss the results obtained. 

& Experimental results 
An experimental programme was carried out in 
order to investigate the general behaviour of a 
sample of dry sand under a varying stress field, 
with particular reference to the unloading and 
reloading characteristics. A full description of 
the experimental apparatus used for these tests 
may be found in [3]. All three principal stresses 
were independently varied as required, two being 
held constant and one varying during each 
experiment, by using a true tri-axial test. A 
further, more detailed discussion of this point 
of procedure is available [12]. In cases where the 
lateral stresses were equal, the sample behaviour 
was verified by duplicating the experiment using 
a standard tri-axial test. 

o 

Confining pressures 
p,~= 1,40 kg crd" 

o 0.0~ 0.02 0.03 0,be 0 . 6 s  
Axial Strain Q, 

Figure 1 Calculated and experimental stress-strain curves 
for sand. 

Representative results are shown in Fig. 1. The 
behaviour of the granular media subjected to 
first loading was found to be consistent with that 
represented by Daniel's equations [2]. The first 
loading behaviour was also accurately represen- 

ted by the following incremental stress-strain 
relationships: 

+ 

KI[ g 

~p~ [ Kr J 

K p7 L [,@,e0 px] 

Kr q 

+ [4(P PO p.] (3c) 

for whichp~ ~< p~ ~< p= 

where/(1 (= - K) and K2 are constants found 
experimentally. Comparison with Equations 2a 
to c shows that each leading diagonal term, which 
is of primary importance, is identical. The 
second order terms give substantially the same 
results numerically, but Equations 3a to c are 
considered more consistent. 

Examination of Fig. 1 also shows that, at 
lower values of strain relief, the hysteresis loop 
due to unloading/reloading might be considered 
comparatively small, and that, at this stage, the 
stress-strain behaviour of the sample could 
perhaps, as a first approximation, be represented 
by a straight line. However, as cycling continues, 
at higher strain relief the hysteresis loop becomes 
larger, presumably due to greater slip at the 
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particle interfaces. It is now clear that only the 
reloading portion of the loop can still be 
approximated by a straight line. This is clearly 
not acceptable for the unloading portion, 
because a significant error would be introduced. 

An important feature to emerge is that, 
contrary to the findings of some previous 
researchers [2], the unloading/reloading rela- 
tionship is not only a function of the confining 
pressure, but also depends on the stress levels 
during the cycling process, i.e. the level at which 
cycling is commenced and that at which re- 
loading takes place. 

The micro-behaviour of the granular specimen 
is undoubtedly complex, due to the different 
types of strain that take place during loading. 
Besides compaction of the grains themselves, 
slipping and rigid body movement of the grains 
takes place, and this behaviour depends on the 
nature and packing of the material. On un- 
loading it is likely that the particle compaction is 
quickly relieved due to the small strains in the 
grains, and nearly all the rebound is made up by 
counter slips and free body movements. Again, 
during reloading some slipping will take place as 
well as grain compaction. Therefore, it is 
evident that prediction of the stress-strain 
behaviour of a granular material, such as sand, 
under complex loading is a very difficult problem 
and the best approach is clearly to make no 
attempt to isolate the different micro-strain 
components. It would also seem reasonable to 
assume linear reloading characteristics. A more 
thorough approach than this may well be an 
unnecessary refinement considering the nature of 
the material concerned. 

With this object in mind, the following 
incremental equations were derived which 
satisfactorily predicted the behaviour of the 
specimen during the unloading sequence: 

ar fC = 
exp [ -  rip :/4(PUP ,)1 

A 4(PuP=) ~P x 

exp [ -  r2Pu/4(P.Pz)] 
- f2(pjp~)g~/(p~p,) 3Pu 

exp [ -  rap~/~/(P~Pu)] 
- f2(pu/p~)g~/(pxpu) 3Pz 

(4a) 
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exp [ -  r,p =/ ~/(p~p ~) ] 8p: 
f2(P ,/Pu) g 4(PuP,) 

exp [ -  r=PJ4(P=P~)I 
+ f, 4(P ~P~) 8p~ - 

exp [ -  rap=/~/(P~Pu)] 
f2(P~/Pu)g~/(P~Pv) 

exp [ -  rlP=/4(PuP~)] 
.f2(pu/p,)g4(p~p~ ) 8p~ 

3p~ (4b) 

exp [ -  r2pu/ 4(P ~P ~) ] 8 - 

exp [ -  r3p z~ 4(P ~P~)] 
+ f~4(P=P~) 8,o, (4c) 

for which p ,  ~< Pu ~< P ~. 
Where rl, r2 and r z are stress ratios defined by p 

(ultimate)/p ~i, Pu (ultimate)/pui and p ~ (ultimate)/ 
pzi respectively, p~i, p~i and p~i are the stress 
levels at which unloading commences, and 
f~,f2, g are constants found experimentally. The 
corresponding predictions are shown plotted in 
Fig. 1 for comparison with the experimental 
results. 

As previously discussed, the reloading beha- 
viour is represented as linearly elastic. This 
results in a small error at the junction with the 
main loading curve, but this is thought not to be 
excessive. Therefore, the reloading characteristics 
may be represented by the following equations: 

aE~  - ( E ~ i  - ~=~) 

(P xi -- P xf) ap ~ 

_ (E~ui  - " = u f ) @ .  

(pui Puf) 

_ (E=~ - " = 0  8 p ~  ( s a )  
(po~ p~f) 

(p  -_ 

('V~.ti - -  s  ~ P u  
+ pu ) 

(%~___L- %a) 3p, (Sb) (p ~i - p ~r) 

- -(p----] 7_ p =~) 

- -  !E zy i  

(Pui 

+ 

•Px 

( p  =~ - (5c) 

where E~ui, e.ur, etc. are the strains in the x- 
direction due to loading in the y-direction at the 
commencement and end of the unloading portion 
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respectively of the unloading/reloading cycle. 
These, too, are shown plotted in Fig. 1, for 
comparison with experiment. 

It is now evident that the behaviour of a 
granular media under general loading con- 
ditions can be satisfactorily predicted using 
Equations 2, 3, 4 and 5 as soon as the constants 
for the particular sample have been found 
experimentally. The advantages over conven- 
tionally accepted approaches are clear and may 
be outlined as follows: 

(1) the intermediate principal stress has been 
taken into account not only in the elasto-plastic 
behaviour but also in the rupture theory ; 

(2) attention has been paid to the unloading 
and reloading characteristics which have been 
shown to be rather more involved than pre- 
viously proposed; 

(3) the modulus of elasticity and Poisson's 
ratio, which are stress dependent under these 
circumstances, have been replaced by stress 
dependent coefficients. 

4. Application to existing problems 
There has been developing interest in the non- 
linear behaviour of engineering soils [2, 4, 13] 
and for many engineering applications it is 
evident that a tractable non-linear representation 
of soil behaviour can provide useful results 
[2, 14, 15]. Some previous investigations [16] 
have tended to utilize existing soil theories and 
generally apply them to idealized problems 
which for more practical cases may not be a 
satisfactory description of soil behaviour. Others 
have approximated non-linear stress-strain beha- 
viour either by iteration or incrementally, by 
repeated revision of the elastic properties during 
the stressing process. Both procedures have their 
short-comings [2]. The type of problem for 
which non-linear stress-strain theory has rele- 
vance includes the bearing capacity of founda- 
tions, cavitation and the ultimate load capacity of 
soil anchorage systems. Besides these applica- 
tions having relevance in the field of civil 
engineering, they are also of increasing impor- 
tance in the realm of military engineering, and 
marine exploration with associated resource 
utilization. 

As mentioned in the introduction, other areas 
of study in which the proposed formulation may 
have application include investigations into the 
dry pressing of powdered materials. It may, 
therefore, be of importance to both ceramists 
and metallurgists. 

It is of interest to note that the equations 
presented in this paper have been used in 
calculations carried out at Queen Mary College, 
London, to predict the ultimate capacities of 
both small and full scale anchors in order to 
complement the work already carried out in this 
area of study [17]. Work is proceeding in order 
to assess the anchor behaviour at working load 
and this is a particular area in which the relation- 
ships presented will be of importance. 

As it is instructive to have reference to an 
example utilizing and manipulating incremental 
equations of the type presented, Appendix 1 
outlines a cavitational theory incorporating 
these equations which is applicable to a semi- 
infinite mass, of granular soil. 

5. Conclusions 
The aim of this paper was to prepare an approach 
for predicting the behaviour of granular media 
under a general loading cycle, including un- 
loading and reloading. In accordance with the 
general three-dimensional stress system, the 
failure criteria is also dependent on the inter- 
mediate principal stress and not only the major 
and minor principal stresses which has been the 
case in conventional theory. 

It is apparent that, for many practical cases of 
soil behaviour, a general stress-strain theory 
incorporating elasto-plastic concepts which can 
be determined using routine "true" tri-axial tests 
has some importance in the realm of engineering 
soils. Particularly as experience indicates that 
sands, unlike clays, have stress-strain charac- 
teristics which, for the same material, do not 
differ significantly whether in place or in the 
laboratory. 

An interesting feature which may well be 
applicable to a large range of naturally occurring 
granular soils, even though due to their mode of 
deposition they may be anisotropic in their 
behaviour, is that when subjected to unloading 
and reloading, the reloading produces a nearly 
linear response. This suggests that it could be an 
indication of the behaviour of the soil when 
subjected to structural loading. Furthermore, if 
the structural loading is not excessive subsequent 
response could also be approximately linear. 

Whereas this may in some cases be true for 
spread footings, other applications resulting in 
higher and more localized loading will probably 
require the concise statement of non-linearity, 
inelasticity and stress dependency in order to 
make reliable load/displacement predictions. 
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Appendix 1 
Consider the expansion, by internal pressure, of 
a cylindrical cavity with axis vertical, located at a 
vertical depth H from the free surface of a 
semi-infinite granular soil mass; the sectional 
plan of the cavity is as shown in Fig. 2. Initially 
the cavity is of radius R0 and, as the pressure is 
increased, the radius of the cavity will increase, 
with the soil in the annular zone adjacent to the 
cavity eventually attaining a state of limit 
equilibrium. Outside this annular zone the soil 
behaviour will be assumed elastic. 

\ " element 
I F in plastic 

L 
. zone 

zone- 

Figure 2 Sectional p lan  o f  cavity. 

When the radius of the cavity is R 1 let the 
ultimate internal pressure be pu, the radius of 
the plastic zone R~ and the radial deformation of 
the surrounding elastic zone w. 

Ca lcu la t i on  of  the u l t imate  pressure Pu 
Considering the equilibrium of a soil element in 
the plastic, or elastic, zone results in the equation 

apr (Pr - Po) O" (A1) 
a---7 + "  r 

The condition of rupture applicable to the 
plastic zone of a granular medium is, according 
to Daniel [3 ]: 

1 
pr = Kr ~/(PuPo) 

where Kr = (1 - sin r + sin r i.e. the 
Rankine ratio�9 As the depth of embedment is H, 
it follows that 

K r p l  �9 = ~/(po]/H)  ( A 2 )  

where y is the density of the soil. 
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Combining Equations A1 and A2 and solving 
the resulting differential equation, ensuring 
stress compatibility at the interface of the elastic 
and plastic zones; i.e. 

pr + Po = 2KoyH'~ 
j ;  at r = R2 ; (A3) 

Krpr 4(porH) 
where K0 = coefficient of earth pressure at rest, 
leads to: 

f r 7H 1 
P r =  ~ -2-Krr ~ +  Krr2 Kr~r ~ + 8 K ~  

+ �9 

Furthermore, let pr -- pu; at r = R1; 

P u  = [ 1( ) 
R1 - yH y H  1 

- a + + 8K0 

yH]  + yHJ " (A4) 
, J  

In a similar fashion, the stresses in the elastic 
zone can be found from Equation A1 together 
with the condition 

pr + Po = 2Kr  

again ensuring stress compatibility given by 
Equation A3. 
Thus, for the elastic zone: 

[ )] KoTH + 21(2 2K~ ~ + 8K0 (A5a) 

and 

Po = Koy H + 

K~ + 2Kr 2 2Kr ~ + 8K0 �9 (A5b) 

The deformation w in the radial direction at 
the interface of the elastic and plastic zones is 
given by: 

[pr - v(po + Pu)] dr 
W ~  .E R 2 

Hence 
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w = R2 (1 + v) 
�9 E 

L KoVH - 2Kr---- ~ + " ~ r  ~/ \Kr-r 2 + 8Ko 

(A6) 

where v = Poisson's ratio and E = modulus of 
elasticity. 

The use of the stress-strain relationships 
applicable to ideal perfectly elastic solids may be 
thought inappropriate when applied to granular 
soils. A further discussion of this point may be 
found in Appendix 2. 

Consideration of the soil volumes before and 
after the expansion of the cavity yields the 
following relationship: 

R12 _ l ( w ) ~ _  + 3 
R~ ~ (1 + 3 - k )  2 . .  2 

(A7) 

where S = average volumetric strain in the 
plastic zone and k = Ro2/R1 z. Hence eliminating 
w between Equations A6 and A7 and substitu- 
ting for Ra2/R22 in Equation A4: 

PLI = 

{~/{ 1 [2(1 + V ) ( A - K ~  + , - k) E 

rH/ + ~,HJ 
where 

A -  2K, ~ + T#,  D + 8Ko �9 

This is an expression for the ultimate pressure 
in the cavity and can be determined, provided 
the average volumetric strain in the plastic zone 
is calculable. 

A s s e s s m e n t  of average volumetric strain 
in the plastic zone 
It is clear from the rupture surface relationship 
that this surface in three-dimensional space is a 
conicoid. However, in this problem we are 
interested in its intersection with the p~-constant 
plane, which is shown in Fig. 3. 

Examination of Fig. 3 shows that point A is 
the state of stress in the soil before cavitation 
takes place. The shape of the rupture surface is 
clearly defined for a given value of p~, but the 
extent of this surface, i.e. the extent of the plastic 
zone, is not specified. However, supposing that 
p~ were known, the plastic zone is defined and 

p- K#H 

/ 
........ @i! B ~  e~d,@ 

', 

Plastic Zone p:p. 
Figure 3 Stresses on py-constant plane. 

the average volumetric strain in this region may 
be calculated from 

r=R~ 

X ~rdV 
__ r=R~ 

r~R~ 

Z dV 
r--R1 

where 3r is the volumetric strain for each incre- 
ment of volume, e.g. the volumetric strain 
determined from a typical stress path AD shown 
in Fig. 2. Hence, specifying the step length in the 
summation process as t, we may re-write 

r= R~ r= R~ 

~' 3r27rrt 2t ~' r~r 
= r = R 1  r--Ra 

= (A9) 
~'(Re 2 -  Ra ~) (R2 2 - R1 ~) 

The assessment of the strain is made using sets 
of equations such as Equation 2a to c. 

As the material in the plastic zone has non- 
linear stress-strain characteristics, the principle 
of superposition is only valid for small incre- 
ments of strain. Hence, equations such as 
Equations 2a to c must be applied incrementally 
along all stress paths from the starting point A 
to each point such as D on the rupture surface, 
with the volumetric strain being computed at 
each increment. Using this process, it is possible 
to compute the average volumetric strain for a 
given plastic zone. 

In general, the computed volumetric strain 
will not be the same as the assumed value and, 
therefore, it is necessary to repeat the computa- 
tion using revised values until convergence is 
achieved. Finally, stress step lengths are success- 
ively decreased until a sufficient degree of 
accuracy is obtained. 

Conclus ions  
Summarizing the previous work, it can be seen 
that the calculation of the ultimate pressure 
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causing cavitation may be carried out using the 
following iterative procedure. 

(1) Initially, assume a value for the average 
volumetric strain in the plastic zone. Using 
Equations A6 to A8, calculate the radius of the 
plastic zone and also the ultimate pressure of the 
cavity. 

(2) Using Equations A9 and 2a to c, calculate 
the average volumetric strain involved in the 
stress paths defined by Fig. 3. This calculated 
value should be the same as the initially assumed 
value. If  not, repeat the iteration using a revised 
value of 8, and continue the process until the 
average volumetric strain is substantially the 
same as the assumed value. 

T P~ 

/ / /  

,,% ."//j~// 
d ' /  

J 

Figure 4 Variation of ultimate pressure with depth. 

T p~ - . . . . . . . . . . .  DePth=3H 
~DepfhDh ~ = 3 H  " ' ' ' - ,  . \ \ 

. . . . . . . . .  ept "~. 
Dep ih  H . . . . . . . . . . . . . . . . . .  ~ . . ' , ~ .  '~ 

H m 

1,0 

Figure 5 Variation of ultimate pressure with Ro/R1. 

Representative results of this computation are 
shown in Figs. 4 and 5. Fig. 4 shows the variation 
of the ultimate pressure with the depth of 
embedment for a typical granular soil. Also 
plotted are the results that would be obtained 
were the volumetric strain in the plastic zone 
adjacent to the cavity ignored. These results 
show a difference in the ultimate pressure of 
approximately 25~ between the two cases. Fig. 
5 shows the variation of the ultimate pressure 
with the ratio of initial to final size of cavity. 
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Appendix 2 
It is significant that most writers in this field 
have assumed that the soil beyond the region of  
the plastic zone behaves as a perfectly elastic 
solid possessing a constant elastic modulus and 
Poisson's ratio. It is evident, however, that this 
assumption is worthy of further investigation to 
see if significant error results from its use. 

Referring back to Equation 2a to c, in the 
case of 3e~ = Be, = 0, it is clear from sym- 
metry that p~ = p~. Hence equating 8E~ to zero 
and putting p~ = p ,  = Kopv, the following 
equation is obtained: 

1 

] ~ 
= Ko K0 

Kr - 1  Krr "Kr - 1  

Using the known constants for the material 
used, i.e. K = - 100; m = n = 0.009; r = 42~ 
yields K0 -"- 0.64; This is the coefficient of earth 
oressure at rest. 

Using equations such as Equations 2a to c and 
working along the stress paths defined by the 
initial state of the soil and Equations A5a and b, 
the radial deformation of the zone of the soil 
between r = R2 and r = oo was computed. 
Examination of the incremental process proved 
that the behaviour of the soil in this zone was 
not markedly non-linear. The resulting apparent 
deformation characteristics were used to cal- 
culate depth-dependent values of the modulus of 
elasticity which, when used in Equation A6, 
resulted in values sufficiently close to those 
originally found by Equations 2a to c to render 
the use of the more involved approach, as 
outlined in this Appendix, an unnecessary 
refinement when calculating the ultimate pressure 
causing cavitation. 

However, it is important to note that although 
careful choice of the elastic constants in this case 
simulated the elastic zone conditions, in general 
the modulus of elasticity and Poisson's ratio are 
stress-dependent, and hence functions of the 
stress paths. 
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